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Presentation Outline

« Overview of program

« Highlights of Technical Progress
* Inferential sensing (viscosity)

o Sensor & Process fault detection
(multivariate)

« Bad lot detection (single sensor)

* Program status, plans and financials



Intelligent Extruder Services: Detect process upsets

Team’s Vision — . feeder mat’l flow
| Aplelitheas * feed property shifts
Bulk ... ,
Feed Additives | - out of spec production
/ Dri * use existing sensors &
Drive ave drive signals

D] strands
Gears = Extruder screw| | Pelletizer

\ Heaters Drive
\
X’ Detect incipient faults
X~ drive motor/ gear box/ screw Water Bath

\_ « feeder / pelletizer drives

\ e cutter (wear Estimate key variables
ONSITE \\ ( ) * material properties (viscosity)

Center \’  Feedback Control * intra batch quality
’ * auto fine corrections (MV, Color, comp) | ¢,,siomer payof

 fast changeover (grade, color) * First Pass Yield
* ‘free’ capacity
Remote on-line suppon‘ * Reduce QA lab testing
. . . * less customer returns
callbrgtlon, setup, maintenance | . reduced landfill waste
* data interpretation, problem solving - lower energy use

» 24X7 process expertise availability




Why Polymer Compounding Advanced Automation?

Where the market was...

...has been recently

* Once per batch QA checks

* More pounds, smaller Lots

* More make to order (--> 100 %)
» Shorter lead times ( 72 hrs)
 Tighter specification limits

» Lower prices

» Costly waste disposal

Continuous compounding (zero changeover time)

Guaranteed first time quality (100% FPY)

And what’s

Intra batch quality audit trail...less QA, happy customers

needed

tomorrow
streams

Quality measurements without costly sensors / waste

Feeback control to hold spec limits

Diagnostics to predict problems...no unscheduled repairs
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Presenting GE’s OnSite Support M Center

(800) 533-5885
Staffed 24 hours/day & 7days/week
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Key program goal: to
detect process upsets
early and reliably via
Bad material passed (cust. disatisfaction) continuous monitoring

Good material contaminated (lower FPYield) and signal analysis




SOURCES OF FINISHING

Process Faults

\/

VARIABILITY

* clogged feeders, die screen
* poor barrel temp regulation
* vent, die screen blockage

* strand drop, fuse

* pellets hot
Operator Feeders
Errors _l
——>
+ formulation ‘Gears ScreW Pe"etlzer
. séeéup T Product
. errors

Incoming
Material
Variation

* Resin MW

* Resin color

* Resin morphology
* SPD pellet

* Additive feed rates

Equipment Faults

!

Variabilit

Bath

* MV

» Composition
* Color

* FPY

*COST / #

|

* feeder drive, motor, control
* dull pellet cutter

* screw shaft breakage

* screw wear

» gear box (bearing, gears)
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Common Extruder Process / Sensor Faults

Category

Upset/ Fault

Impact

Raw Material Variability

Resin |V variation
Resin Flowability variation

viscosity shift ==> customer mold flow problems
feeder mass flow rate error and composition error

Process Variability

Feeder variation
Screw speed variation
Zone Temperature variation

Sceen Pack variation

improper screw filling and composition ratio error
change in residence time and specific energy input to material (usually small)
shift in solid-melt transition point, excess or not enough mixing, unmelt passage

variation in screen pack clogging from run to run - leads to unknown die pressure bias

Sensor Drift/Bias

Feeder bias/drift

Screw speed bias
Torque bias
Die Pressure bias

Temperature sensor bias

composition and viscosity drift, confounds process diagnostics

screw speed drive not at set point, confounds process diagnostics
machine runs helow capacity, confounds inferential sensing / process diagnostics
false over-pressure alarms, confounds inferential sension/process diagnostics

wrong correction for temperature effects in viscosity estimation (die zone)

Sensor and process anomalies have confounding
interactions to be unraveled for proper diagnosis




Objective

Inferential Sensing

Utilize extruder sensor information in combination with process model
and estimation techniques to predict product quality information (e.g.,
viscosity) on-line.

Benefits (a) Rapid upset detection, (b) Continuous QA audit, (c) Basis for
closed loop correction

Model Development
DOE To
Highlight
Material Material Material Pro
perty
Property »| Property Model =5 2o
Variation Development
Sensor On-line
Data| Rheometer or
' off-line
% gi material
L S property test
inl = results

s

Utilization in Closed Loop Control
Controller
Adjust Process Material Property
Parameters Estimator

Sensor
Data

& __Consigten

7 e Product
Quality
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On-line Inferential Viscosity Estimation
Why viscosity?

- key quality parameter for broad range of customers

- directly correlated to composition in most materials

Measured Inputs | proportional impact strength in engineering polymer blends

* Feedrates

» Screw Speed

* Barrel Temp. B
- - Off-Line Measurement of
o . Viscosity in QA Lab

- initial calibration

- periodic update

- for each material grade
- machine configuration

Measured Outputs

« Torque Calibration
* Die pressure

v
< Viscosity Estimation from
Machine Variables
- continuous, on-line

11



GE CR&D ZSK-25MM Twin Screw Extruder Facility

Capable of 1200 rpm, 164
Nm of torque, resulting in
throughputs of 100 Ib/hr

Computer controlled side
feeders

Utilize K-Tron loss of weight
feeders

30HP GE Innovation Drive

Data Acquisition Capabilities

Monitor 24 data channels
simultaneously

Monitor barrel temperatures,
barrel heater reactions, feed
rates, torque, speed, die
pressure, melt temperature

Motor shaft encoder

Other ZSK twin screw facilities used
* 120 mm ~2000 Ib/hr (GEP Selkirk)
* 133 mm (GEP Selkirk)

58 mm ~ 500 Ib/hr (W-P Ramsey)
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Viscosity Measurement

Capillary Rheometer

Pressure

Reservoir

Capillary ||

Die l

Flow Rate

» Melt is subjected to constant shear
through a capillary

* Measure steady state viscosity at
medium-high shear rates

* Measurement accuracy: O ~ 0.08 mean

Steady-state Viscosity (Pa.s)

T = Constant

10000

1000 F 4

100 ¢

10 100 1000 10*
Shear Rate (1/s)

RDS

S SOSNSENNNY

Rheometer

* Melt is subjected to oscillatory shear between
parallel disks

» Measure dynamic viscosity at low-medium
shear rates

* Measurement accuracy: O ~ 0.02 mean

Complex Viscosity (P)

10°

T = Constant

s"°°O¢:
E L

10
Frequency (rad/sec)

100

1000 13



Viscosity Estimation

 Viscosity of extruded polymer product depends on

« composition
» shear rate
« temperature

 Use extruder as on-line rheometer

 estimate viscosity from on-line measurements of machine variables

* necessary to account for variations in composition, shear rate and

temperature in extruder

» General form of transfer function fit between measured viscosity and

machine variables

U=0,+ 2 (O *Feedrate, ) + [3, (Die Pr. * ScrewSpeed) + [3, (Barrel Temp.)

u=ao+55ai

account for composition,
throughput (shear rate)

OR

+ [3, (Barrel Temp.)

~N

account for temperature variation
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Viscosity Estimation - Summary

* Viscosity estimation robust different conditions
« different raw materials
« small / large extruder
* varying operating conditions (feedrates, screwspeed, barrel temp.)
« capillary / RDS rheometer calibration

» Typical Results

Material Extruder Rheometer R2 % Error
Polycarbonate ZSK25* RDS n/a 5
Noryl PX5511 ZSK 25~ RDS 0.894 5-7
Noryl PX0844 ZSK 25~ RDS 0.7 6
Noryl PX5511 ZSK 120 ** RDS 0.64 5
Noryl PX0844 ZSK 120 ** capillary 0.856 6.5
Noryl PX5511 ZSK 25~ capillary 0.964 8

(*) - 100 Ib/hr (**) - 2000 Ib/hr

Good correlation between measured viscosity and machine variables
using same general form of TF, with prediction error between 5-8%

15



Viscosity Estimation 25mm Research Extruder - Noryl PX5511

Viscosity TF:
U=0ad,+a,” Blend_FR + a,* (PS+XPS)_FR + a, * (DieP*ScrewSpeed) + a,* BarrelT

Viscosity at 250 s', R? =0.894

11000
-+ Measured
ZSK25 extruder 2 10000/ . 0] Predicteq
- 2 feeders for Blend, (PS+XPS) g B\g
- varied barrel temperature z 9000 ¢ w /%é |
§ 8000 - 1\;>g4 ‘ ]
Viscosity of samples measured with RDS
-1 I I I I \ \
at 4 shear rates (100, 150, 250, 400 s!) 7000 — T e 6 7 8 9 37383940 41 42 43 44
Run No
5
Pl o
50 00 X
2
Good correlation obtained

_ . . — _ 0 | | | |
prediction error ~ 5-7% 2 3 45 6 7 8 937383940 414243 44

Run No
16



Stability of Viscosity Estimation over time - Noryl PX5511

Viscosity TF:
U =0, + a,"Blend_FR + a, *(PS+XPS)_FR + a,*(DieP*ScrewSpeed) + a,*BarrelT

Viscosity @ 100 s-!, R2=0.964
L L L B

2000 —
—- Measured
Z.SK25 extruder ’g —- Predicted
- 2 feeders for Blend, (PS+XPS) o 1500
- experiments done over different days ? @:@% K@ )
with very different operating conditions & 1000 Eﬁ %J :
>
4/2/2001 - Runs 1-15

Blend FR=23(Ib/hr), (PS+XPS) FR=21(Ib/hr), 500 s 4 5 67 8 9101213141516 1718192021 22232425
ScrewSpeed = 480rpm, BarrelT =285 C Run No

5/8/2001 - Runs 16-25
Blend FR=16(Ib/hr), (PS+XPS) FR=15(Ib/hr),

ScrewSpeed= 250rpm, BarrelT =275 C 10—
5;
Viscosity of samples measured with 5 TT ? ? T
capillary rheometer at shear rates 100-1000 s-! LTJ o £ $ v oF L v | i 00"
. . . 5
Good prediction with same model l
over ~ month -1

1‘ é 3 4‘- 5 (; 7 8 9101112131415161718192021222324 25
- prediction error ~ 8% Run No 17



Production scale (2000 Ib/hr) - Noryl PX5511
Viscosity TF: |
U = o, +a,*(Torque*ScrewSpeed) + a,"Blend_FR + a; *PS_FR +a,"XPS_FR

Viscosity prediction, R? = 0.641

Experiment done at GEP Selkirk on
production scale ZSK120 extruder
- 3 feeders for Blend, PS, XPS

2 6500 1

Viscosity of samples measured 2 M

. = 6000 | - Measured Screen pack blockage .
with RDS -+ Predicted

550 | | | | |

] 0 2 4 6 8 10 12
Die pressure measurements are Run no
unreliable due to screenpack clogging 5

o®$of®??@fl

0 2 4 6 8 10 12

- used Torque instead of Die Pr in model

Fairly good correlation with prediction
error ~5% (except for runs 10,11)

- shows impact of partially clogged die screen -10-
- torque works in place of die pressure

% error
)]




Using inferential sensing for ‘bad material’ detection
* Viscosity Estimation from Machine Variables

Machine Variables

[\
[6)]
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AU W
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Viscosity TF 200} ]
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@ time (min)

Speed, Die P
N
o
o

1600 Estimated Viscosity

Monitor viscosity on-line to distinguish

1400 | between good/bad product
1200, | * develop and maintain viscosity TF for multiple
1000, | extruder lines and product grades

800

1 | | 1
0 5 10 15 20 25 19
time (min)



Key Challenge: Detecting and correcting sensor errors

Measurement of Machine Variables |«— Unknown Sensor Bias/Drift

1l

Viscosity TF

@ Actual viscosity

Estimated Viscosity / Error in estimated viscosity due to sensor bias
/ .« -false alarm on off-spec product

1400
L MW{’
1200 M %M Use model based methods
1000 | ’ | to detect and classify sensor errors

800

1600

0 5 10 15 20 25 20
time (min)



Model Based Diagnostics

Inputs
» Screw speed
* Feed rates

* Barrel Temps. _ -

- Measured Outputs
* Torque
* Die pressure

Residuals | Fault Detection
N g &
E e Classification
Model Predicted Outputs @
—»

* sensor bias / drift

* raw material variation

* Multi Input Multi Output approach  feeder faults / drift

» temperature control fault

* Dynamic model to capture expected variations in . drive faults (speed. torque.)

outputs due to known / planned variations in inputs

» Use residuals generated by the model to identify

abnormal variations
21



Dynamic Model

Develop Dynamic Input/Output Models for Extruder Variables

Inputs (u) Outputs (y)
* Master (total) Feedrate (u,)  Torque (Y4)
* Blend % (u,) * Die Pressure (Y>)
« ScrewSpeed (uz)

* Die Zone Temperature (u,)
Dynamic model for each output y; of the form
v =2Gu

where the transfer function G,-j is of the form

_ _ Ts K :gain
G = K(S z)-As72,)e Z : zeros
i
(s=p)-(s—p,) p; : poles
T,: delay

Model parameters are identified using input/output data from experiments

22



Model for Torque

 Input/Output data collected from large extruder at GEP Selkirk (2000 Ib/hr)

* Dynamic model: fit from one data set and validate against two other data sets

Model Fit

n o o

Torque deviation (%)

1
—
W

A

1
N

Dynamic model for Torque fits
well against measured data

1000 2000 3000 4000 5000 6000

R? =0.955

Torque deviation (%)

Torque deviation (%)

Model Validation
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Model for Die Pressure

 Input/Output data collected from large extruder at GEP Selkirk (2000 Ib/hr)

* Dynamic model: fit from one data set and validate against two other data sets

Model Fit
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Dynamic model for Die Pressure
fits well against measured data

Use Input/Output Models for Residual
Generation and Fault Detection
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Residuals for Sensor Fault Detection

 Residuals between Measurement & Model Prediction

4  / Residuals independent of fault in
= G +Gpu, +Gu, + G u, | r y
1 2
Yy = Gyt + G 1ty + Gyt + Gy 11, r y,

Generate 4 more residuals with unique signature of a
fault (bias) in an input sensor (u;), e.g

(G21y1 -Gy YZ) - {Gz1 (ZGﬁ u) - Gy, (Zsz Uj)} I3 U
Residual - Fault Signature Table
Residuals
1 2 3 4 5 6
No Fault F F F F F F
Bias in Torque T F T T T T Unique Fault
Bias in Die Pressure F T T T T T .
% Bias in Master Rate T T F T T T Slgnature for EaCh
LE Bias in Blend % T T T F T T SenSOI‘ BlaS Fau1t
Bias in Screw Speed T T T T F T
Bias in Die Zone Temp. T T T T T F

F : Zero Residual T : Non-Zero Residual
Issue : Measured signals and thus residuals have noise
» Simple approach: Filter and data optimized threshold tuning for “zero”/ “non zero”
 Rigorous approach: Multiple model or generalized likelihood ratio based on modébs



Model Based Fault Detection Block Diagram

Measurements
from Sensors

(y, u)

Performance: time to detect, prob detect, prob

miss, prob false alarm, ...

<+— Continuous variables —»

Dynamic
Model
[ | Residual
i | Filter Threshold | Fiags (T/F)
. r F
_Iul Residual 1 A 1
> >
Generator LPF |_>
) T F
|| Residual 2 > 4 2
> Generator LPF |_>
| Residual I3 A F,
Generator LPF > L
| —>
||y Residual Iy A F,
> Generator LPF . >
Residual I's A Fs
~”| Generator LPF g
|| Residual Te A Fe
> Generator LPF B L

Match
Fault
Signature

No Fault
— >

Bigs iny,

Bias iny,

Bias in u,

Bias in u,

Bias in u,

Bias in u,

26
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Detection of Sensor Bias or Drift

Residuals . :
esdt-indepolye resd2-indepoiyl Analyzing sensor data from DOE run with
10 | | 0 | | 300 Ib/hr bias introduced in master feedrate (u1)
0 at sample# 1000 (simulation run)
-40 \ \ Fault Elags
-20 : : -60 : ‘ Residual 1
0 2000 4000 6000 0 2000 4000 6000 Flags
05 resid 3 - indep of u1 20 resid 4 - indep of u2 0;Sc Speed
1
10 (Rl sing w""‘; T .”‘ — 0
OMNWLWH | 0 W“ W i 1 Blend %
]/ 'u U u L h -10 w | ; 0 MasterRate\
-0.5 : : -20 ‘ ‘ 1
0 2000 4000 6000 0 2000 4000 6000
10 resid 5 - indep of u3 o resio[ 6 - indep‘of ud 0 Die P \
1
0} 0 Torque \
1 No fault
-2 ol

\

% 2000 4000 6000 0 2000 4000 6000 0 1000 2000 \3000 4000 5000 6000
Sample #
Residual Flags for ALL residuals except r, become TRUE * Bias detected in master feedrate
- matches fault signature of a bias in Master Rate (u,) after ~250 samples

Sensor Bias Detection will Improve Reliability of Viscosity Estimation
and Detection of Good/Bad Product 27




Die Pressure/ Screen Pack ProblemCase study

When can a single machine variable and its statistics or spectral
features be used to detect out spec production?

* Problem: Screen packs commonly used upstream of die to filter un-melted junk
 Impact: Variable % blockage corrupts die pressure measurement
* Large lot-to-lot variability in the initial die pressure

 Large within lot variability due to process variability and maintenance
practices (e.g. when screen pack changed)

* Inconsistency in die pressure change rate
* Result: SPC on die pressure alone unreliable

« Approach: Could adopt model based methods above, but are there simpler
ways?.

Here lllustrate diagnostic methodology developed using data from a 120mm
production scale extruder producing Noryl™ (PX0844).

28



Kalman filter based bad lot detection

1 ; i i
200 400 T B0y ann 1000
Bubgroup Index

2440
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340

3 400
&

©

5 3si-{H

320

200 400 600 800 1000
Subgroup Index

Die Baziure - psig

700

ure - psig

& 400
v

e Variability

TV

I |
0] 200 400

|
600 200 1000

Subgroup Index

100

I i i i i |
o 100 200 300 400 500 600 700
Bubgroup Index

Data from different production
runs shows significant
variability in die pressure
signal even though only one
lot is considered out of
product viscosity spec
Diagnostic technique must be
robust to uncertain initial
condition and maintenance
impacts such as screen pack
changes.

Chosen diagnostic approach
Is to optimally estimate the
slope and the intercepts using
a Kalman Filter. The
estimates and the confidence
of these estimates is
compared with a threshold to
differentiate between good

and bad lots.
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Example of Diagnostic
Approach
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32” 1 1 I
0 200 400 600 200
sSubgroup Indes

1aoa

* Comparison of measured and estimated die pressure
signal

Optimal estimates of slope and intercepts

Uncertainty (I.e., covariance) in the estimates of slope
and intercept.

* Diagnostic approach is based on information fusion of:
» Monitor slope estimate and compare with threshold

» Monitor covariance of intercept estimate and if
intercept uncertainty remains large for a prolonged
period of time, then high probability that th%ld)t is
bad.



Kalman filter bad lot detection

Approach Applied to A Good Lot
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Handle screen pack
changes via reset of
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Bad lot detection summary

 Die pressure may be used to differentiate between good and bad lots.

» Table below provides summary of various predictors that help to differentiate
good and bad lots based on die pressure data for PX0844:

Property Good Lots Bad Lots
Die Pressure <650 >650
Slope estimate <0.006 >0.01
% Time with high <30 >70
covariance (Estimates not reset | (Estimates reset often
often — process stable) | — process unstable)

« Performance: 28 correct bad lot detections, one false alarm and one possible
miss with non optimized threshold settings.

« To improve robustness, the basic approach is extended by incorporating a
process model and identifying a more optimal threshold for resetting of
estimates due to screen pack changes.

» Thresholds can be determined easily by using historical data.
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Program Summary: Key 2000-2001 Results

Inferential sensing from machine
variables
— multivariate viscosity estimation with
no waste calibration works for

multiple polymer materials on
research extruder

— repeatable 5-7% viscosity accuracy
suitable for continuous quality audit

On-Line Process diagnostics

— new model based strategies for
detecting feeder and extruder “drift”
and “bias” type system faults

— demonstration on lab extruder and
production scale (Selkirk Line 8)

— new “bad lot” detection algorithm
Commercialization

— Working closely with GEIS in Salem
and GE Fanuc sales team to develop

Services strategy based on algorithm

developments

— First cut at computer architecture to
support computational needs

Demonstrations

— Invited to particpate in “x_based”

controls team at GEP (Selkirk)

— Validate viscosity estimator on

commercial scale Noryl production
line in Selkirk

— Validated on-line bad-lot detection on

Noryl

— 7101 visit to GEP BOZ (Netherlands)

planned for additional demonstrations

Building software tools for machine sensor data

fusion for fault diagnostics, inferential
sensing and control

33



Ongoing and Future Work

Continue viscosity estimation/diagnostics demonstration on production
scale machines from new or available data (including Mt. Vernon, BOZ)

Implement and test closed loop control based on inferential sensor in
25mm research extruder

Evaluate new high bandwith ‘clamp-on-shaft’ torque sensors (“FACTS”)
for use as alternative to drive based torque estimation for screw torque
distribution estimation

Downselect and software algorithms and data handling/interface and
storage requirements for use in initial service offerings

Implement selected algorithms on industrial grade platform as
prototype for commercial system

Develop and transition commercialization plan and integrate with GEIS
tollgate and multigenerational product planning cycle

Final project reporting

Continue dialog with third party sensor suppliers (e.g., ultrasound,
dielectric, transient infrared spectrometry) for possible integration into
Intelligent Extruder platform (with resources outside scope of DOE
funding) 34



Intelligent Extruder Implementation Platform

CIMPLICITY HMI
» Custom Screen Apps
300 Mhz NT Board * Integrated Diagnostics
» Diagnostics * Internet Gateway to OnSite
« Estimation
* Control Internet
*R/T MATLAB C-shell >
(dev’t only)

PLC Control

» Feeders

» Barrel heaters

* Drive interface

* Protection logic

35



Intelligent Extruder
Project Plan

GE Industrial Systems Dev't
Tollgates Not Shown

TASKS 1Q99 3Q99 1Q00 3Q00 1Q01 3Q01 ‘ ‘ 1Q02 ‘
| | |
1 System Reqts. Concept
2 Process models A Develop ment

3 Extruder Diag. S A U e s e — me Planned

m— Completed

4 Inferential Estim. % .
=== Projected

|
5 Inferential Control h

6 Platform/integr.
Platform

& Demonstrations

7 Demonstrations
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Cumulative Cost
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Intelligent Extruder Cost Plan

$90,000

"~ $80,000

- $70,000

- $60,000
- $50,000

- $40,000

- $30,000
- $20,000

+ $10,000

o ACTYALS

\° @’bﬁ N4 @’b\\ N4 @’bﬁ

Rev 5/31/01

$0

37



More Information
(see handout )
or contact

Tim Cribbs, GE Industrial Systems Adv. Process Services
(540)-387-8639 ~ Timothy.Cribbs@indsys.ge.com
Paul Houpt, GE CR&D Principal Investigator
(618)-387-5341 ~ houpt@crd.ge.com
Randy Wyatt, GE CR&D Business Development
(5618)-387-5281 ~ wyatt@crd.ge.com
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